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Unlike most drugs, whose benefit is restricted to the individual who takes the drug, prophylactic vaccines
have the potential for far-reaching effects that encompass health service utilisation, general health and
wellbeing, cognitive development and, ultimately, economic productivity. The impact of immunisation
is measured by evaluating effects directly on the vaccinated individual, indirectly on the unvaccinated
community (herd protection), the epidemiology of the pathogen (such as changing circulating serotypes
or prevention of epidemic cycles), and the additional benefits arising from improved health. Aside from
protection of the individual, the broader success of immunisation is dependent on achieving a level of
coverage sufficient to interrupt transmission of the pathogen. When evaluating the cost-effectiveness
of vaccines, all of these potential benefits need to be accounted for. In many countries where immunisa-
tion programmes have been highly successful, the control of disease has meant that the benefits of immu-
nisation have become less obvious. Once a well-known and much-feared disease appears to have
disappeared, individuals, including healthcare professionals, no longer view ongoing prevention with
the same sense of urgency. Reduced coverage is inevitably associated with resurgence in disease, with
outbreaks potentially leading to significant morbidity and loss of life. Ensuring the continued success
of immunisation programmes is the responsibility of all: individuals, healthcare professionals, govern-
ment and industry.
� 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and historical perspective

Prophylactic vaccination is one of the cheapest and most effec-
tive forms of medical intervention. From Jenner’s work in 1796, to
new vaccines based on our better understanding of molecular biol-
ogy, immunisation has reduced the consequences of catastrophic
infections. In the 18th century we had the vaccinia virus vaccine,
in the 19th, Louis Pasteur and Émile Roux demonstrated that inac-
tivated or attenuated organisms could provide protection and, in
the 20th century, we experienced an accelerated development of
new vaccines involving many new technologies.
‘‘Millions of human lives, as I shall show, have been preserved by
the fruits of Jenner’s genius; yet today, thousands upon thousands of
men, some intelligent though designing, some intelligent though
deluded, the great mass of them fanatical and ignorant, decry vaccina-
tion as not only being of no service to humanity, but positively a nui-
sance injurious to health and life, while millions of our fellow men are
utterly ignorant of, or indifferent to the matter.” These words written
by Eugene Foster and published in 1896 [1] were relevant intro-
ductory remarks for his publication on the statistical evidence of
the value of immunisation, and are still relevant today. It is aston-
ishing how in some ways, things have not changed, despite the
measurable impact of vaccines.

This paper reviews how to measure impact both from the clin-
ical and from the health economics standpoint. A wider range of
assessments of the value of immunisation, including the impor-
tance at a population level and adherence to immunisation pro-
grammes, are explored. There is a clear need for appropriate
surveillance to evaluate immunisation strategies, and the means
to ensure future success is discussed.
.1016/j.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.vaccine.2016.10.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mark.x.doherty@gsk.com
mailto:philippe.x.buchy@gsk.com
mailto:philippe.x.buchy@gsk.com
mailto:baudouin.a.standaert@gsk.com
mailto:carlo.giaquinto@unipd.it
mailto:carlo.giaquinto@unipd.it
mailto:david.c.prado@gsk.com
http://dx.doi.org/10.1016/j.vaccine.2016.10.025
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
http://dx.doi.org/10.1016/j.vaccine.2016.10.025
http://dx.doi.org/10.1016/j.vaccine.2016.10.025


who don’t deal with the severe cases. In addition, varicella

infection in childhood can lead to reactivated disease later

in life (zoster) which has a high risk of severe disease; but

the temporal gap between varicella infection in childhood

and zoster in retirement means that the visceral, obvious

link between vaccination and reduction of disease, based

on personal experience, is lost.
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2. How is the impact of vaccines measured?

Immunisation has been controversial since its introduction,
with opponents claiming it was unnatural or contaminating [2].
Despite this, immunisation has become one of the most wide-
spread and successful of all health interventions after the provision
of safe drinking water. The reason for this is simple: the first
immunisation campaigns were directed at diseases that had very
high mortality and morbidity in their communities. The dramatic
impact of immunisation on diseases which had previously been
considered an unavoidable part of everyday life was so great, and
so readily visible, that public support for immunisation was
overwhelming.

Subsequent programmes to finally eradicate smallpox and
today, to eradicate poliomyelitis, were built on the same kind of
public consensus. The benefits of eradicating a well-known and
much-feared disease are so obvious, that once it becomes techni-
cally feasible, the public and political support needed to carry
out the programme is assured. This can still be seen today; the
2014 Ebola epidemic in West Africa inevitably generated political
pressure to develop vaccines for the disease. But beyond the
obvious health benefits, it is estimated that the eradication of
smallpox; which cost roughly 100 million US dollars (USD) in total,
generates annual savings of 1.35 billion USD [3]. The polio eradica-
tion campaign, once completed, is likewise expected to save about
1.5 billion USD per year, and millions of lives [4]. But the polio
eradication campaign also highlights one of the factors which
make measuring impact so important, and so difficult; which is,
that as formerly-feared diseases disappear, the benefits of immuni-
sation become less clear-cut, while the costs remain visible (see
Box 1).
Box 1 The paradox of vaccination.

The oral polio vaccine (OPV) is a live attenuated vaccine.

Although cheap to use and highly effective, it has the very

rare side effect of actually causing paralytic poliomyelitis

in roughly 1 in a million recipients [63]. While this risk is

negligible when compared to the 1 in 200 risk from natural

infection, it starts to become significant once the disease

has been eradicated in a region. For that reason, once nat-

ural polio infections are controlled, it makes sense to

switch to the inactivated vaccine despite a resulting higher

cost for the vaccine programme. But determining exactly

at what point this switchover should be made requires

balancing the extra resources required against the risk of

disease. For this kind of decision, one can no longer rely

solely on public consensus, because the risks are so small

that they become invisible to the general public; including

many medical practitioners, who will never see a case of

paralytic polio in their entire career. By contrast, the

increased costs are readily visible. Paradoxically, this

effect can also apply to diseases which remain common.

For example, varicella infection is a highly infectious dis-

ease that affects virtually all individuals in unvaccinated

communities [64]. Although death and disability from

chickenpox are rare, the extremely high number of

varicella infections means that cases of encephalitis and

post-varicella stroke still constitute a significant burden

of disease in children [65]. At the same time, the very

large number of uncomplicated infections means that

chickenpox is overwhelmingly viewed as a benign infec-

tion by the general public and those medical professionals
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To build the case that immunisation is an effective and
worthwhile intervention against infection where the most serious
consequences may be long delayed after infection (human papillo-
mavirus [HPV], hepatitis B virus [HBV], varicella, etc.) or where
serious illness is rare (meningococcal infection, varicella) impact
data is required. Ironically, in the developed world, where once-
common infections such as tetanus, diphtheria and measles have
been essentially eliminated by immunisation, impact data is also
required to retain public support for continued immunisation. This
is discussed in detail in the following sections.

3. Efficacy, effectiveness and impact

Vaccine efficacy corresponds to the direct protection to
vaccinated individuals provided by the vaccine under optimal con-
ditions, and usually focuses on the prevention of clinically appar-
ent outcomes (e.g., meningitis, hospitalisation, death). When an
infectious agent is able to cause a range of different clinical
manifestations, the primary analysis will focus on one specific clin-
ical manifestation (e.g., invasive pneumococcal disease during a
pneumococcal vaccine study) while secondary analyses may
include other clinical manifestations as endpoints (e.g., pneumo-
nia, bronchiolitis, otitis media). For some vaccine studies, primary
endpoints may not always correspond to clinically apparent dis-
ease at the time because the goal is to prevent a disease that
may only appear later in life (such as cancer after HPV infection).
Surrogate endpoints (e.g., immunological monitoring or isolation
of the infectious agent) can then be used in order to shorten and
reduce the costs of phase 3 trials. In some instances the primary
analysis may look only at the prevention of the infection in relation
to the microorganism types contained in the vaccine. Because of
the cross-protection conferred e.g., by pneumococcal conjugated
vaccines, HPV vaccines, and rotavirus vaccines, secondary analyses
may include non-vaccine-type related infections. Adequate choice
of primary endpoint is extremely important as it directly impacts
on the selection of the most appropriate study design. However,
because vaccine efficacy does not consider the background inci-
dence of the disease, it may not reflect the full public health impact
of the vaccine [5].

Vaccine effectiveness refers to the protection conferred by
immunisation in a defined population. It measures both direct
(vaccine-induced) and indirect (population-related) protection.
The effectiveness of a vaccine is proportional to its efficacy but is
also affected by vaccine coverage, access to health centres, costs
and other factors not directly related to the vaccine itself.

Defining the impact of a vaccine is more complicated. Interna-
tional agencies like the World Health Organization (WHO), the
European Medicines Agency and the Centers for Disease Control
and Prevention have no consensus on what defines impact. For
example one can estimate vaccine impact by comparing the inci-
dence of a disease in the same population before and after the
introduction of the vaccine or, in theory, by comparing one vacci-
nated and one similar unvaccinated population at the same time
(see Box 2).
enefits for human health. Vaccine (2016), http://dx.doi.org/10.1016/j.
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Box 2 Measuring efficacy, effectiveness and impact.

Vaccine efficacy is usually measured during pre-licensure

randomised, controlled clinical trials, where the difference

in disease incidence between the vaccinated and non-

vaccinated participants can be considered as the result

of the direct effect of the vaccine [9,66–68]. Vaccine

effectiveness is usually estimated from observational

post-licensure studies and reflects the ability to protect

against disease under real-life conditions when the vac-

cine is in routine use [9,66–68].

Both vaccine efficacy and vaccine effectiveness are mea-

sured by the formula:

VE ¼ Runvaccinated�Rvaccinated
Rvaccinated

where R ¼ risk or rate

and differ primarily in the populations where the vaccine

is used, and whether indirect effects are included.

Measuring the impact of a vaccine requires defining what

the term means, as ‘impact’ may or may not include long-

term downstream effects. For example, if impact is only

assessed by measuring changes in disease outcomes,

healthcare use, and the proportion of samples testing pos-

itive for a disease [9] a relatively simple analysis such as

the one below can be used.

Impact¼ IRpre�vaccine�IRpost�vaccine
IRpre�vaccine

¼1� IRR where IR¼ incidence rate;

IRR¼ incidence rate ratio
If a more complete assessment of impact is required, a

complex model including the economic effect of lost edu-

cational or work time, will be needed.

Box 3 Case studies.

Direct effects – hepatitis B: For a baby born to a mother pos-

itive for both the hepatitis B virus (HBV) surface antigen

and the HBV e antigen, the risk of developing a chronic

HBV infection is 70–90% [69,70]. Approximately 25% of

these children may develop severe liver disease later in

life, including hepatocellular carcinoma [71]. A longitudi-

nal study conducted in Thailand over a 20-year period

demonstrated that none of the children born to mothers

at high risk for HBV transmission developed chronic liver

disease after being vaccinated at birth and at 1, 2 and

12 months with a recombinant hepatitis B vaccine, essen-

tially reducing their risk by 100% [72].

Indirect effects – poliomyelitis and rotavirus: For poliomyeli-

tis, the R0 (between 5 and 7) is associated with a herd pro-

tection threshold of 80–86%. Given the known vaccine

effectiveness of OPV, the critical vaccine coverage

required to interrupt transmission in the population can

be determined: in this case: 84–90%. In Japan, where vac-

cine coverage was 90–97% with a 2-dose OPV schedule,

the number of poliomyelitis cases has fallen from 1000

to 5000 per year to zero for more than two decades [73].

In Austria, rotavirus vaccine coverage reached 87% in the

vaccine-eligible age group (children between 3 and

20 weeks of age) one year after the vaccine was imple-

mented via universal mass vaccination (UMV) and a

reduction of 74% in rotavirus gastroenteritis hospitalisa-

tions was observed in this age group. Interestingly, a

22% decrease in hospitalisations was also observed in

older children (32–60 months of age) and a 47% decrease

in younger children (below 3 months of age); two age

groups that were not vaccinated [74]. Similar observations

were made in other countries [75–78]. Unlike the case of

poliovirus, this effect was detectable even though rota-

virus continues to circulate in these populations. The

impact of rotavirus vaccination is also seen in changes

in the epidemiology (e.g., age-specific incidence) and the

seasonality (e.g., delay in the peak epidemiologic activity)

of the disease [74,79–82].

Total effects: Introduction of measles UMV had a huge

impact on childhood mortality (up to 90% in most

resource-limited countries) that cannot be explained by

the prevention of measles infections alone [61,83–85]. It

is believed that measles virus infection decreases the

immunity of the population against other infections

(e.g., bacterial pneumonia, dysentery) by creating a

polymicrobial ‘‘immune memory loss” that can be effi-

ciently prevented by measles vaccination [86,87].
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As for any intervention in infectious diseases, four types of
effects can be observed following immunisation: direct, indirect,
total, and overall [6]. The direct effect is the reduction in the prob-
ability of developing the disease, which is determined by compar-
ing vaccinated and unvaccinated persons belonging to the same
population and exposed to the same immunisation programme,
in order to eliminate programme-specific effects. To estimate the
indirect, total and overall effects, the comparison is made between
the vaccinated population (which will include both vaccinated and
unvaccinated) and a reference population that contains only
unvaccinated people.

The indirect effect is the difference between the outcome in an
unvaccinated individual in a population where the immunisation
programme is in place, and what the outcome would have been
in the same individual in a comparable population without the
immunisation programme. In other words, it is how much an
immunisation programme reduces the risk of disease for an indi-
vidual who did not receive the vaccine. This population-level effect
resulting from reduced transmission of the infection is called herd
protection. The magnitude of the indirect effect essentially
depends on the immunity of the population, and on other factors
such as the nature of the immunity provided, the transmissibility
and pattern of transmission of the infectious agent [7]. The basic
reproduction number (R0, i.e., the average number of other individ-
uals that each infected individual will infect in a population that
has no immunity) is one of the key determinants of herd protection
(Table 1). When the prevalence of protected individuals in a popu-
lation against a person-to-person transmissible disease is higher
than the herd protection threshold, the number of secondary cases
per infected case is lower than one and the spread of disease is, in
theory, blocked [8].

The total effect of immunisation is the sum of the direct and
indirect effects for the vaccinated individual that result from being
Please cite this article in press as: Doherty M et al. Vaccine impact: B
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vaccinated and being in a population with an immunisation
programme. The overall effect is the effect of the immunisation
programme in the entire population that includes vaccinated and
unvaccinated individuals [9] (see Box 3).
4. Health economics

The systematic health economic evaluation of new vaccines is a
relatively recent development [10], in contrast with other new
therapies where it has been used for half a century [11]. This
reflects the difficulty of assessing impact, and the fact that vaccine
development was often pursued as a public good by a limited
enefits for human health. Vaccine (2016), http://dx.doi.org/10.1016/j.
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Table 1
Herd immunity thresholds for selected vaccine-preventable diseases (adapted from
Fine [62]).

Disease R0
a Herd immunity thresholdb (%)

Diphtheria 6–7 85
Measles 12–18 83–94
Mumps 4–7 75–86
Pertussis 12–17 92–94
Polio 5–7 80–86
Rubella 6–7 83–85
Smallpox 5–7 80–85

a R0 – Basic reproduction number, or the average number of other individuals
that each infected individual will infect in a population that has no immunity.

b The minimum proportion of the population that needs to be immunised to
eliminate infection (=1 � 1/R0). This is dependent on both the R0 and the effec-
tiveness of the vaccine.
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number of producers, rendering price comparisons meaningless.
However, over the last two decades as pressure on public health
budgets has mounted and new, more sophisticated (and expen-
sive) vaccines have become available, health economic assessment
has become an essential aspect of immunisation programme plan-
ning [12–14].

Because formal health economic analysis for vaccines is a newer
discipline than that for drugs, the same methodologies used for
drugs were initially applied to evaluate the economic implications
of immunisation [15]. This is starting to change as new tools are
being developed that include the fixed budget within which health
authorities operate, allowing optimisation modelling using objec-
tive function criteria and model constraints [16,17] and including
assessments such as return on investment considered from a gov-
ernment perspective; for example, the better economic results
when a population remains healthy [18,19]. In other words if a
new vaccine reduces the risk of disease per at-risk individual as
compared with the existing situation, how much do we want to
pay for that extra benefit? Is there a maximum price to pay, or
do we let the free market decide?

To help make these assessments, decision makers define up-
front a standard unit of health benefit; usually defined as QALYs
(Quality Adjusted Life Years), the average value of a single
disease-free year for one individual. This value varies from
region-to-region [20], and WHO recommends that any new medi-
cal intervention can be considered as being very cost-effective if its
incremental cost-effectiveness result when compared with the
existing situation is below the threshold of one times the Gross
Domestic Product (GDP) per capita [21]. That is, the value of one
‘‘unit” of health gain (the QALY) in a country is usually considered
to be equal to the GDP per capita of a country. This definition
remains controversial, particularly for developing countries where
the cost of new interventions may outstrip the available health
budget [22–24]. It has been argued that for situations where
resources and money are scarce, avoiding extra cost may be as crit-
ical as gaining additional health [25]. Equitable access to health-
care is also an important factor in many countries. These are all
outcome measures that are relevant for vaccines. However, there
are other factors to consider.
5. Vaccines, population and society

The type of cost-effectiveness analysis discussed above is very
sensitive to the health evaluation of the individual, as this is what
most treatment interventions specifically do: they alleviate the
suffering of an individual patient who is already ill [26]. Preventive
activities are different because they are initiated before disease
onset: healthy people are at risk of infection and would therefore
benefit from prevention. Which individuals will actually get a dis-
Please cite this article in press as: Doherty M et al. Vaccine impact: B
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ease is unpredictable, and so the benefits of vaccines are most
accurately measured at the population instead of the individual
level. Even those who remain unvaccinated benefit from the reduc-
tion in transmission after the vaccine has been introduced (herd
protection) [27]. This is very different from treatments for non-
infectious disease, and conventional cost-effectiveness analyses
do not easily capture the additional benefits of immunisation [28].

Additionally, infectious diseases can vary from mild to very
severe. As the focus is often on a single, most severe manifestation,
much of the disease prevented will not necessarily show up in an
economic assessment if a narrow evaluation perspective is consid-
ered. A typical example is rotavirus immunisation which prevents
many cases of infant diarrhoea for which no medical advice is
sought, but where a parent must be absent from work in order to
stay home and care for the child. For rotavirus, this benefit can
be huge, because the total frequency of the disease can be as high
as 40% of children <5 years old during epidemic winter periods in
temperate countries [29].

Another example is pneumococcal immunisation, where the
focus has been on preventing invasive disease such as meningitis
or sepsis, which has a high mortality, but where the reduction in
acute otitis media and of antibiotic use after immunisation pro-
vides a very substantial additional health and economic benefit
[30]. Much of the benefit when introducing new vaccines is thus
to be found at societal level affecting not just patients, but parents,
employers, and the economy as a whole.

Vaccines may have a critical impact in the prevention of epi-
demics at times where healthcare utilisation is already very high.
In temperate regions, rotavirus infections normally peak during
winter periods when the incidence of other infections (such as
influenza) is also peaking, potentially adding to workload at what
is already a period of high demand for healthcare in hospitals
[31]. Introduction of the rotavirus vaccine can therefore result in
improvement in the overall quality of healthcare delivery, through
better hospital bed-day management and personnel working con-
ditions [31].

Finally, many of the benefits of immunisation are realised over
decades, and may not be immediately obvious; for example, pre-
venting disease in childhood is linked to better educational perfor-
mance and higher earnings later in life [32,33]. Some of the
potential benefits identified through modelling may appear years
or even decades later, as for HPV and HBV vaccines, and only when
the vaccine has achieved high coverage within the target popula-
tion [34,35]. So, substantial investment may be needed to intro-
duce and maintain an immunisation programme before the full
return on investment can be defined. All of these aspects of vaccine
impact are difficult to capture in an economic assessment using
conventional methodological approaches.

The links between individual prevention through immunisation
and societal benefits that may improve the overall economy have
been highlighted for infectious diseases that affect all levels of soci-
ety, such as tuberculosis, malaria, and pandemic influenza [36,37].
Recognising this, WHO has recently issued an overall scheme of
evaluation of vaccines by which the benefit is highlighted from dif-
ferent angles, not only focussing on health gains. WHO concludes
that vaccines have the ability to achieve broad societal or commu-
nity gains more easily than any other medical intervention [38].
6. Remaining challenges

A few specific challenges remain that are unique for vaccines.
One is the discounting factor that heavily affects the benefit of
vaccines, since that benefit doesn’t occur instantaneously after
administration, but is spread over time [39]. Discounting is based
on the concept that a benefit today is worth more than a benefit
enefits for human health. Vaccine (2016), http://dx.doi.org/10.1016/j.
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tomorrow, but what discount rate, and whether it should be con-
stant or flexible remains controversial [40].

A recent review on the value of vaccines categorised the intan-
gible benefits of immunisation into three groups; outcome-related,
behaviour-related productivity gains and community externalities
[41]. The process of categorisation helps to define what to measure,
when, and how. Estimating the intangible and long-term benefits
of immunisation requires a credible model with transparency in
structure, data input and data output, validated against observed
data [42,43].

Finally, economic assessments of vaccines in the developed
world are different from that in the developing world [44], where
immunisation is more likely to be challenged on its priority rather
than its value, given that resources are scarce. Budget optimisation
or disease portfolio management are tools to specify the economic
value of the new intervention.

In conclusion, immunisation is a perfect example of Adam
Smith’s theory on the invisible hand in the market: a ‘‘selfish
desire” to remain healthy by getting vaccinated will increase over-
all community welfare by reducing the spread of disease [45].
Box 4 The complex interplay between epidemiology, natural disease, vaccine
properties and vaccine policies.

Rubella infection during pregnancy can cause congenital

malformation of the foetus. Rubella vaccination is highly

effective against disease and transmission but is less

effective against re-infection. UMV targeting young chil-

dren of both sexes may provide some indirect protection

by preventing pregnant women being exposed to the

virus, but this does not eliminate the risk of congenital

rubella syndrome. The vaccination programme could also

target only girls and adult women who will be immune to

rubella at the time they enter pregnancy. In that case, low

vaccine coverage or waning immunity could lead to infec-

tions during pregnancy [60]. A decision in Poland to selec-
7. Other ways of assessing the value of vaccines

It has long been known that measures of average IQ at the
national level correlate well with GDP and educational achieve-
ment [46]. Additionally, in both developing and developed econo-
mies it has been noted that average IQ has risen significantly over
the last century (the so-called ‘‘Flynn effect”) with particularly
sharp rises in average national IQ in the periods of rapid increase
in national GDP associated with industrialisation; even when
improved access to education is controlled for [47]. The reasons
have been much debated, but immunisation in early childhood is
associated with significantly better test results at school, which
are linked with subsequent improved employment prospects [4].
That this is not purely a socioeconomic effect reflecting access to
healthcare or education in resource-limited settings, is shown by
a study where Danish children surviving bacterial meningitis sub-
sequently had lower rates of educational achievement and poorer
employment prospects than their peers, an effect that persisted
years or even decades after their illness [32]. More recent work
[33] suggests that the burden of disease in the population (drawn
from WHO statistics) can explain much, if not all, of the observed
IQ differences. The hypothesis is that the energy used in fighting
off infections, and the nutrition lost through common infectious
diseases, such as diarrhoea during childhood, can harm the devel-
oping brain, with potential long-term consequences. If correct, this
suggests that improving child health through better sanitation and
immunisation may ultimately provide benefits far in excess of the
obvious health gains by also improving educational and employ-
ment outcomes; ultimately contributing to national economic
growth. Analysis of the gains seen from the GAVI immunisation
programme suggest that the increase in earnings by vaccinated
children when they reach adulthood will exceed the entire cost
of the immunisation programme; even before the obvious benefits
such as decreased death and suffering, and reduced medical costs,
are figured into the equation [4].
tively vaccinate only girls until 2004 saw a widespread

rubella outbreak in 2013 (>38,000 cases) with >80% of

cases in youngmen, and two recorded cases of congenital

rubella syndrome [88].
8. Adherence to immunisation programmes and impact

The introduction of immunisation dramatically reduced the
incidence of infectious diseases. Despite this success, vaccine-
preventable diseases are still endemic in different parts of the
world. Several factors may be involved in the re-emergence and
persistence of vaccine-preventable diseases: the rise of more
virulent clones, international travel, compromised immunisation
Please cite this article in press as: Doherty M et al. Vaccine impact: B
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coverage in developing countries or in war areas, parents choosing
not to vaccinate due to concerns about safety, lack of good immu-
nisation programmes for elderly people, and suboptimal responses
to vaccines in certain populations. These are some reasons why the
herd immunity threshold needed to control the diseases is not
always achieved [48].

Herd protection is related to coverage. When a high level of vac-
cine uptake takes place in a community, the chances of acquiring a
disease may get close to zero. From the point of view of certain indi-
viduals, the ideal (selfish) strategy is that everyone else should be
directly protected by immunisation, while they benefit from the
indirect protectionwithout costs (side effects, time, money, inconve-
nience). As the number of these ‘‘freeloaders” increase, herd immu-
nity decreases, with the outcome that disease incidence rises [7].

Although coverage is important, other factors that may impact
herd protection include ‘‘imperfect immunity”: if immunisation
does not confer solid immunity to all, the threshold level of immuni-
sation required to protect a population increases. Waning vaccine-
induced immunity will also require higher levels of coverage [7].

While the re-emergence of vaccine-preventable diseases is
related to several factors, it is not by chance that two of the most
problematic infections involved in recent outbreaks, measles and
pertussis, are diseases with a high reproduction number [49–51
and Table 1]. These outbreaks represent a threat to return to a sit-
uation where measles and other preventable diseases were ende-
mic in many countries of the world. Therefore, the implications
of herd protection cannot be underestimated, because for certain
diseases, it only takes a small number of unimmunised individuals
in a community to facilitate the spread of illness.
9. Immunisation strategies and surveillance

The choice of the immunisation strategy depends on the epi-
demiology of the disease, on the biological characteristics of the
natural infection, and on the vaccine. Some diseases (e.g., rotavirus,
respiratory syncytial virus) have highest incidence or mortality in
very young children, but the immaturity of the immune system
and the negative effects of antibodies of maternal origin constitute
challenges for effective immunisation early in life (see Box 4).
To accurately measure the impact of a vaccine, it is essential to
understand the incidence, prevalence, duration, and natural course
of the infectious disease prevented. Efficient epidemiological
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surveillance systems provide essential data on disease burden and
help define the target population, i.e., the population that will gain
most from the vaccine. After vaccine implementation, surveillance
is required to measure both the vaccine uptake and the epidemio-
logical impact [52] (see Box 5).
Box 5

After recommending hepatitis A vaccination for only

some ethnic and high-risk groups of the population, in

1999 the Advisory Committee on Immunization Practices

in United States (US) recommended 2 doses of hepatitis

A vaccine for all children P2 years living in 17 states

where the incidence of hepatitis A was the highest. Since

2005, a 2-dose vaccination schedule is recommended to

children 1–2 years of age in all states. Between 1996 and

1997 and 2004, a 41.5% overall decline of hepatitis

A-related ambulatory visits was observed, while hospital-

isations declined by 69% [89]. Interestingly, using a large

medical insurance database, Zhou et al. demonstrated

that all age groups and all states (although to a lesser

extent in the states where the vaccine was not

recommended) benefited from the hepatitis A incidence

reduction, suggesting a strong herd effect [89]. Based on

the excellent epidemiological data describing the natural

variation in hepatitis A incidence a mathematical model

allowing for herd protection confirmed that the observed

decline in hepatitis A incidence can indeed be attributed

to immunisation [90]. Israel adopted a different strategy

and in 1999 elected to implement UMV hepatitis A vaccine

for children aged 18–24 months. The passive national

surveillance of hepatitis A reinforced by an active surveil-

lance programme over a 4 year period (1999–2003) in one

district demonstrated a >95% reduction in hepatitis A dur-

ing the post-vaccination era. As in the US, a strong herd

effect was observed and a reduction in hepatitis A inci-

dence was documented in all age groups [91].

North Queensland, Australia, experienced 18 outbreaks of

hepatitis A between 1998 and 1999. Following the report in

1999 of a severe hepatitis A outbreak in an Indigenous

children population in North Queensland, hepatitis A vac-

cine was recommended for those children and led to a

rapid 12-fold decline in the number of infections in both

Indigenous and non-Indigenous children, as well as in

non-vaccinated age groups, probably by simply interrupt-

ing the chain of transmission [92].

Nevertheless, only continued surveillance of the disease

can confirm the real impact of these programmes, since

in the absence of strong long-term protection, the hepati-

tis A vaccination programme could potentially shift the

disease from a young age group where the infection is

often asymptomatic, to an older adult age group where

the disease is more often symptomatic [93].
The lessons learned from the surveillance of the epidemiologi-
cal impact of a disease may in return justify changes in the immu-
nisation programme. For instance, in the 1980s it was believed that
a single dose of measles vaccine at the time of school entry would
eliminate measles in US. After a prolonged period of low incidence
(honeymoon period), a resurgence of measles occurred, in particu-
lar in children <5 years who were not yet attending school. Follow-
ing this experience, a two-dose immunisation policy commencing
at the youngest age possible was adopted by many countries [53].
Please cite this article in press as: Doherty M et al. Vaccine impact: B
vaccine.2016.10.025
Surveillance strategies focus not only on the epidemiological
aspects of the diseases but also sometimes include laboratory
surveillance. The introduction of the monovalent rotavirus vaccine
for young children in Brazil in 2006 was rapidly followed by a
decline in severe rotavirus gastroenteritis and in all-cause hospital-
isation for diarrhoea [54,55]. Early concerns that protection might
be lower against fully heterotypic strains have not been borne out
by clinical trials and post-licensure surveillance studies [56]. A
increased relative incidence of G2[P4] in Brazil seen post-
immunisation turned out to be transient, and was also observed
in neighbouring countries without rotavirus immunisation sug-
gesting natural year-to-year variation [54]. Epidemiological
surveillance is therefore important to describe the burden of dis-
ease, identify the target group and then measure all the aspects
of the impact of the immunisation programme. Post-licensure epi-
demiological surveillance should ideally continue indefinitely,
since it may continue to provide important insights and eventually
lead to significant adjustments in the immunisation strategy.

Despite all of the developments in vaccine technology, no vac-
cine can provide life-long absolute protection of all individuals vac-
cinated. Herd protection may prevent people who are not fully
protected, or not vaccinated at all, from developing disease, but
the magnitude of the herd effect depends on numerous factors,
and in particular on vaccine coverage. Immunisation coverage
may be influenced by public health cuts following financial crises,
social inequalities, intensification of travel and global trade, migra-
tion, population aging, scepticism towards public health pro-
grammes in general and distrust of prevention efforts (e.g.,
childhood immunisation programmes) by a portion of the popula-
tion, and reticence of individuals to get vaccinated or to vaccinate
their children (called ‘‘vaccine hesitancy”) [57]. Vaccine hesitancy
may lead to a significant increase in risk for unvaccinated individ-
uals (e.g., parental refusal is associated with a 23-fold increase risk
of pertussis compared to vaccinated individuals [58]) and it is
believed that even small groups of unvaccinated people can reduce
the chances of success of immunisation programmes [58,59].
10. Conclusions

Recent outbreaks of pertussis and measles in countries in which
these diseases were previously controlled show that the success of
immunisation programmes cannot be taken for granted. Changes
that occur over decades, such as decreased compliance with immu-
nisation or changing epidemiology of disease can overturn initial
assumptions about vaccine impact [48,50,60]. At the same time,
benefits flowing from immunisation, such as non-disease-specific
health benefits, improved educational achievement and more effi-
cient healthcare utilisation are difficult to predict and may also
take many years to accurately assess [21,26,33,61]. From this, it
is clear that while the direct benefits of immunisation can be accu-
rately predicted, these form only a baseline; assessing the total
impact of immunisation should be seen as an ongoing process,
requiring modelling ahead of implementation and long-term
surveillance afterwards. In addition, since so many of the benefits
of immunisation rely on achieving a high level of coverage to inter-
rupt disease transmission, frontline healthcare workers play an
especially crucial role by ensuring that all age groups receive the
recommended immunisations, and by contributing to educating
the public on the importance of high coverage immunisation (see
P. Paterson et al., in this issue).
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